Abstract

Several putative lipase genes from the genome of the yeast Blastobotrys (Arxula) raffinosifermentans (adeninivorans) LS3 were overexpressed in the yeast itself and screened for the desymmetrization of the dicarboxylic acid diester diethyl adipate (DEA) into the monoester monoethyl adipate (MEA). MEA can serve as a monomeric spacer group for functional polymers used in medical chemistry and dental applications.The selected lipase Alip2-c6hp was intracellularly located. After overexpression of the corresponding gene, it was purified and biochemically characterized using p-nitrophenyl butyrate as the substrate for standard activity tests. In fed-batch cultivation with constructed yeast strain B. raffinosifermentans G1212/YRC102-Alip2-c6h for large scale production of the Alip2-c6hp biocatalyst enzyme activities up to 674 U L−1 were reached.Several tested diesters were hydrolyzed selectively to monoesters. Under optimized conditions, the purified enzyme Alip2p-c6h converted 96 % of the substrate DEA to MEA within 30 min incubation, whereby only 1.6 % of the unwanted side-product adipic acid (AA) was formed. At room temperature the dicarboxylic acid esters diethyl malonate (DEM), diethyl succinate (DES), dimethyl adipate (DMA) and dimethyl suberate (DMSub) were completely hydrolyzed to their corresponding monoesters. A high yield of 87 % and 25 % could also be achieved with the dioldiesters 1,4-diacetoxybutane (DAB) and diacetoxyhexane (DAH).In conclusion the potential of the lipase Alip2-c6hp expressed in B. raffinosifermentans is very promising for selective hydrolysis of DEA to MEA as well as for the production of other monoesters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.