Abstract

Delamination is one of the most common types of defects for carbon fiber reinforced plastic (CFRP) composites. The application of laser techniques to detect delamination faces difficulties with ultrasonic wave excitation because of its low thermal conductivity. Much of the research that can be found in the literature has only focused on the detection of a single delamination. In this study, aluminum foil was pasted onto the surface of the composite so that it was vulnerable to ablation and could acquire a usable signal. Using a fully noncontact system with laser excitation at a fixed point and a scanning laser sensor, the effects of different aluminum foil sizes and shapes on the wavefield were studied for the composites; we decided to use a rectangle with 3 mm length and 5 mm width for laser excitation experiments. Wavefield characteristics of the composite plates were analyzed with single- and multi-layered Teflon inserts. Taking the time window for standard ultrasonic testing as a reference, the algorithms for localized wave energy with appropriate time windows are presented for the detection of single and multiple defects. The appropriate time window is meaningful for identifying each delamination defect. The algorithm performs well in delamination detection of the composites with one or multiple Teflon inserts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.