Abstract
Abstract For the non-destructive inspection of carbon fiber-reinforced plastic (CFRP), lasers can be used to generate ultrasonic waves. It is important to optimize the wavelength of the laser to ensure the intense excitation of a usable propagating mode. Real CFRP components used in the construction of airplanes and automobiles are often coated with several types of resin to protect against weathering. These resin layers change the excitation of the ultrasonic waves. Thus, the optimum laser wavelength may be changed by the coating resin. In this paper, we investigated the excitation of ultrasonic waves in a resin-coated CFRP plate using different laser wavelengths. We conducted experiments to convert the laser wavelength using periodically poled LiNbO3 (PPLN) devices. By injecting mid-infrared laser to a coated sample, we observed excited ultrasonic waves using a laser Doppler vibrometer. We found that transparent resins significantly increase the amplitude of the first-arriving longitudinal wave. Furthermore, when the laser was strongly absorbed in the surface layer, the excitation of longitudinal waves was suppressed. These results were clarified by a one-dimensional model of the thermal generation of ultrasonic waves. We concluded that a laser passing through a resin layer is a viable candidate for the effective inspection of coated CFRP by laser ultrasonic waves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.