Abstract
Native human carcinoembryonic antigen is rapidly removed from the circulation by the rat liver Kupffer cell after intravenous injection. The molecule is subsequently transferred to the hepatocyte in an immunologically identifiable form. Carcinoembryonic antigen has a circulatory half-life of 3.7 (+/- 0.8) min, and cellular entry is by receptor-mediated endocytosis. Non-specific fluid pinocytosis and phagocytosis can be excluded as possible mechanisms by the kinetics of clearance and failure of colloidal carbon to inhibit uptake. Substances with known affinity for the hepatic receptors for mannose, N-acetylglucosamine, fucose and galactose all fail to inhibit carcinoembryonic antigen clearance. After two cycles of the Smith degradation, carcinoembryonic antigen is still able to inhibit clearance of the native molecule. Receptor specificity is apparently not dependent on those non-reducing terminal sugars of the native molecule. Performic acid-oxidized carcinoembryonic antigen also inhibits clearance of carcinoembryonic antigen in vivo. Receptor binding is not dependent on tertiary protein conformation. Non-specific cross-reacting antigen, a glycoprotein structurally similar to carcinoembryonic antigen, is cleared by the same mechanism.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have