Abstract

This paper deals with the development of an alternative centerless grinding technique, i.e., in-feed centerless grinding based on a surface grinder. In this new method, a compact centerless grinding unit, composed of an ultrasonic elliptic-vibration shoe, a blade and their respective holders, is installed onto the worktable of a surface grinder, and the in-feed centerless grinding operation is performed as a rotating grinding wheel is fed in downward to the cylindrical workpiece held on the shoe and the blade. During grinding, the rotational speed of the workpiece is controlled by the ultrasonic elliptic-vibration of the shoe that is produced by bonding a piezoelectric ceramic device (PZT) on a metal elastic body (stainless steel, SUS304). A simulation method is proposed for clarifying the workpiece rounding process and predicting the workpiece roundness in this new centerless grinding, and the effects of process parameters such as the eccentric angle, the wheel feed rate, the stock removal and the workpiece rotational speed on the workpiece roundness were investigated by simulation followed by experimental confirmation. The obtained results indicate that: (1) the optimum eccentric angle is around 6°; (2) higher machining accuracy can be obtained under a lower grinding wheel feed rate, larger stock removal and faster workpiece rotational speed; (3) the workpiece roundness was improved from an initial value of 19.90 μm to a final one of 0.90 μm after grinding under the optimal grinding conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.