Abstract

Colorectal cancers may occur in colon region of human body because of late detection of polyps. Therefore, colonoscopists often use colonoscopy device to view the entire colon in their routine practice to remove polyps by excisional biopsy. The aim of this study is to develop a new imbalance-aware loss function, i.e., omni-comprehensive loss, to be used in deep neural networks to overcome both imbalanced dataset and the vanishing gradient problem in identifying the related regions of a polyp. Another reason of developing a new loss function is to be able to produce a more comprehensive one that has evaluation capabilities of region-based, shape-aware, and pixel-wise distribution loss approaches at once. To measure the performance of the new loss function, two scenarios have been conducted. First, an 18-layer residual network as backbone with UNet as the decoder is implemented. Second, a 34-layer residual network as the encoder and a UNet as the decoder is designed. For both scenarios, the results of using popular imbalance-aware losses are compared with those of using our proposed new loss function. During training and 5-fold cross validation steps, multiple publicly available datasets are used. In addition to original data in these datasets, their augmented versions are also created by flipping, scaling, rotating and contrast-limited adaptive histogram equalization operations. As a result, our proposed new custom loss function produced the best performance metrics compared with the popular loss functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.