Abstract
A general transformation involving generalized hypergeometric functions has been recently found by Rathie and Rakha using simple arguments and exploiting Gauss’s summation theorem. In this sequel to the work of Rathie and Rakha, a new hypergeometric transformation formula is derived by their method and by appealing to Gauss’s second summation theorem. In addition, it is shown that the method fails to give similar hypergeometric transformations in the cases of the classical summation theorems of Kummer, Bailey, Watson and Dixon.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.