Abstract

A novel hybrid particle swarm and simulated annealing stochastic optimization method is proposed. The proposed hybrid method uses both PSO and SA in sequence and integrates the merits of good exploration capability of PSO and good local search properties of SA. Numerical simulation has been performed for selection of near optimum parameters of the method. The performance of this hybrid optimization technique was evaluated by comparing optimization results of thirty benchmark functions of different dimensions with those obtained by other numerical methods considering three criteria. These criteria were stability, average trial function evaluations for successful runs and the total average trial function evaluations considering both successful and failed runs. Design of laminated composite materials with required effective stiffness properties and minimum weight design of a three-bar truss are addressed as typical applications of the proposed algorithm in various types of optimization problems. In general, the proposed hybrid PSO-SA algorithm demonstrates improved performance in solution of these problems compared to other evolutionary methods The results of this research show that the proposed algorithm can reliably and effectively be used for various optimization problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.