Abstract

Abstract: Inversion of self-potential anomaly for 2-D inclined sheets of infinite horizontal extent has been studied. Least-square inversion and very fast simulated annealing global optimization has been used to model the five parameters of self potential anomaly. The method of least square and very fast simulated annealing global optimization method is compared and analyzed. Very fast simulated annealing can model the noisy and field data of self potential anomaly very precisely than linear inversion technique. However, time taken by very fast simulated annealing inversion is larger than linearized inversion. The comparative analysis has been done on synthetic data (noise free and noisy) and two field data from Bavarian woods anomaly, Germany and Surda anomaly, India to show the efficacy of both the methods. The estimated parameters were compared with those from previous studies using various global optimization algorithms, mainly neural network, genetic algorithm and particle swarm optimization on the same field data sets. It can be concluded that the global optimization algorithms considered in this study were able to yield compatible solutions with those from least-square methods. The present global optimization method is in good agreement with the other global optimization methods in terms of results and computation time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.