Abstract

With the rapid development of meteorological models, numerical weather prediction is increasingly used in flood forecasting and reservoir regulation, but its forecasting ability is limited by the large amount of uncertainty from meteorological systems. In this paper, a new, hybrid framework is developed to improve numerical precipitation forecasting by combining the multimodel ensemble and probabilistic postprocessing methods. The results show that the multimodel ensemble method used in this paper is an efficient way to reduce prediction errors, especially missing alarm errors. In a comparison of the probabilistic postprocessors based the generalized Bayesian model (GBM) and bivariate probabilistic model (BPM), the GBM shows better performance from the aspects of indicators and is more suitable for real-time applications. Meanwhile, the assessment of probabilistic results shows that the skill of probabilistic precipitation forecasts is related to the quality of their inputs. According to these results, a new hybrid framework is proposed by taking the results from multimodel ensemble as the input of probabilistic postprocessor. Compared to using the raw numerical in GBM, the hybrid framework improves the accuracy, sharpness, reliability, and resolution ability from different lead times by 2–13%, 1–22%, and 0–12% respectively, especially when the lead time is less than 4 d, the improvement can reach 9–13%, 10–22%, and 5–12% respectively. In conclusion, the hybrid two-step framework can provide a more skillful precipitation forecast, which can be useful for flood forecasting and reservoir regulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.