Abstract
In the past decades, orthogonal moments (OMs) have received a significant attention and have widely been applied in various applications. OMs are considered beneficial and effective tools in different digital processing fields. In this paper, a new hybrid set of orthogonal polynomials (OPs) is presented. The new set of OPs is termed as squared Krawtchouk–Tchebichef polynomial (SKTP). SKTP is formed based on two existing hybrid OPs which are originated from Krawtchouk and Tchebichef polynomials. The mathematical design of the proposed OP is presented. The performance of the SKTP is evaluated and compared with the existing hybrid OPs in terms of signal representation, energy compaction (EC) property, and localization property. The achieved results show that SKTP outperforms the existing hybrid OPs. In addition, face recognition system is employed using a well-known database under clean and different noisy environments to evaluate SKTP capabilities. Particularly, SKTP is utilized to transform face images into moment (transform) domain to extract features. The performance of SKTP is compared with existing hybrid OPs. The comparison results confirm that SKTP displays remarkable and stable results for face recognition system.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have