Abstract

The Black–Scholes option pricing model is one of the most significant achievements in modern investment science. However, many factors are constantly fluctuating in the actual financial market option pricing, such as risk-free interest rate, stock price, option underlying price, and security price volatility may be inaccurate in the real world. Therefore, it is of great practical significance to study the fractional fuzzy option pricing model. In this paper, we proposed a reliable approximation method, the Elzaki transform homotopy perturbation method (ETHPM) based on granular differentiability, to solve the fuzzy time-fractional Black–Scholes European option pricing equations. Firstly, the fuzzy function is converted to a real number function based on the horizontal membership function (HMF). Secondly, the specific steps of the ETHPM are given to solve the fuzzy time-fractional Black–Scholes European option pricing equations. Finally, some examples demonstrate that the new approach is simple, efficient, and accurate. In addition, the fuzzy approximation solutions have been visualized at the end of this paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.