Abstract
In actual production practice, the occurrence probability of multiple faults is much higher than that of a single fault. Since the composition of multiple faults is uncertain, it is difficult to establish a single model for multifault diagnosis. In this paper, a new hierarchical framework is proposed for solving multifault detection and isolation problems. First, an adaptive dynamic kernel independent component analysis method is proposed for time-varying and unknown multifault detection. After that, a sparse local exponential discriminant analysis method is developed for the multimodal multifault isolation problem. Finally, the Tennessee Eastman process is used to validate the performance of the proposed methods, and the experimental results show that the proposed methods can efficiently detect and isolate multiple faults.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have