Abstract
This paper treats the identification, the control and the stability analysis of the discrete Hammerstein structure which is composed by a static nonlinearity gain associated with a linear dynamic subsystem. Its parameters are obtained from the subspace identification using the multivariable output error state space algorithm. The stabilization of this class of systems is generally leaded by a nonlinear control law, including an exact inverse of the static nonlinearity. Then, it is possible to use a linear state feedback controller to stabilize the Hammerstein system in closed-loop and to track the reference input. Thus, the performances of this method become limited when the considered static nonlinearity is approximately invertible. In this context, an approximate inverse of this component is investigated. Furthermore, based on the Lyapunov method, the stability conditions are obtained by solving a set of linear matrix inequalities constraints. The case of a coupled two-tank system is considered in order to illustrate the validity of the proposed approach.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have