Abstract

Miscanthus is referred to as an ideal lignocellulosic bioenergy crop, which can be used to generate heat, power, and fuel, as well as to reduce carbon dioxide emissions. The new Miscanthus sacchariflorus genotype named Geodae-Uksae 1 was recently collected from damp land in southern Korea. This study investigated the growth characteristics of Miscanthus genotypes, and developed a specific, sensitive, and reproducible sequence characterized amplified region (SCAR) marker to distinguish new M. sacchariflorus genotype Geodae-Uksae 1 from other native Miscanthus species in Korea. Growth characteristics such as stem length, stem diameter, and dry weight of Geodae-Uksae 1 were greater than those of normal M. sacchariflorus. The genotypes within Geodae-Uksae 1 were had the highest genetic similarity. A putative 1,800-bp polymorphic sequence specific to Geodae-Uksae 1 was identified with the random amplified polymorphic DNA (RAPD) N8018 primer. The sequence-characterized amplified region (SCAR) primers Geodae 1-F and Geodae 1-R were designed based on the unique RAPD amplicon. The SCAR primers produced a specific 1,799-bp amplicon in authentic Geodae-Uksae 1, whereas no amplification was observed in other Miscanthus species. The SCAR marker could contribute to identify Geodae-Uksae 1 among native Miscanthus species. The new Miscanthus genotype Geodae-Uksae 1 has great potential as an alternative lignocellulosic biomass feedstock for bioenergy productions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.