Abstract
In this paper, promising nanocomposite materials based on carbon and titanium are considered. It is shown that the use of a highly porous matrix is of particular interest. Materials based on such matrices have minimal weight and high strength characteristics. The paper also describes composites based on porous carbon fibers with metal oxides. The directions for producing composites can be divided into three types: matrix method, coating of finished nanoparticles with an inert shell, and the formation of nanoparticles and matrices in one process. The coating of nanoparticles with an inert shell prevents their oxidation and preserves the necessary magnetic properties. When using methods such as IR pyrolysis, arc evaporation third-party metal-carbon phases are formed that contaminate the resulting material. To avoid this, reducing agents are used, for example, hydrogen when coking nanoparticles in methane plasma current restores metal particles from its sol-gel and prevents them from reacting with carbon. However, with this method, it is difficult to control the particle size. Using a ready-made matrix allows us to control the size of the nanoparticles. However, this method uses high temperatures, and sometimes hydrogen, which complicates the production process. The main problem in the field of nanocomposites is the search for more technological, simple, cheap, and environmentally friendly methods for obtaining nanocomposites with high performance characteristics. The developed technology for forming the pore space of the initial carbon matrix does not have the above disadvantages. This technology has a simple, cheap, and environmentally friendly design; moreover high temperatures are not used in the process of producing nanocomposites and third-party metal-carbon phases are not formed. The resulting nanocomposite materials are used as electrodes for ultra-high-volume capacitor structures. When studying the capacitance and electrical characteristics of samples, it is found that the formation of metal on a porous carbon matrix can significantly reduce the internal resistance of the cell and increase the specific energy consumption.
Highlights
NANOMATERIALS AND NANOTECHNOLOGYПри образовании покрытия на основе гидроксида титана (осажденного химическим и электрохимическим способами) происходит формирование иерархической структуры размеров агрегатов растущей фазы из сферических частиц размером 10—15 нм
A new generation of nanocomposite materials based on carbon and titanium for use in supercapacitor energy storage devices
In this paper, promising nanocomposite materials based on carbon and titanium are considered
Summary
При образовании покрытия на основе гидроксида титана (осажденного химическим и электрохимическим способами) происходит формирование иерархической структуры размеров агрегатов растущей фазы из сферических частиц размером 10—15 нм. 1. АСМ−изображение углеродного волокна: исходное (а), модифицированное гидроксидом титана путем химического осаждения (б) и электрохимическим способом (в) [9]. Интерес к гидроксидам никеля связан с ис- дроксида никеля располагаются на поверхности пользованием их в качестве катодных материалов активированного углеродного волокна в виде сфер в щелочных перезаряжаемых батареях и супер- достаточно правильной формы, однородных по разконденсаторах. Оксидом никеля, является углеродное волокно, так Основной проблемой в области нанокомпозикак оно обладает высокоразвитой поверхностью тов является поиск более технологичных, простых, и может служить как подложка, в том числе при дешевых и экологичных методов получения наноэлектроосаждении. Оксид никеля на поверхность композитов с высокими эксплуатационными харакуглеродного волокна осаждали золь−гель−методом. теристиками
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have