Abstract
Several authors have extensively investigated beta function, hypergeometric function and confluent hypergeometric function, their extensions and generalizations due to their several application in many areas of engineering, probability theory and science. The main purpose of this paper is to present a new generalization of extended beta function, hypergeometric function and confluent hypergeometric function with the help of m-parameter Mittag-Leffler function, as well as examine some important properties like integral representations, differential formula and summation formulas. We also examine generalized Caputo fractional derivative operator with the help of m-parameter Mittag-Leffler function with associated properties using the generalized beta function. We define a new beta distribution involving the new generalized beta function. The mean, variance, coefficient of variance, moment generating function and characteristic function and cumulative distribution are derived. Further, we derive the solution of fractional Kinetic equation involving generalized hypergeometric function.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.