Abstract

Illegitimate recombinations between low-copy repetitive elements (LCR) have been implicated in the pathogenesis of various chromosomal rearrangements. Two such duplicons have been reported previously on Xp22.3, the CRI-S232 elements, involved in the generation of deletions in the steroidsulfatase gene and five members of the G1.3 (DXF22S) repetitive sequence family. By molecular characterization of an Xp22/10q24 translocation, we identified one duplicon of the G1.3 family in the breakpoint region in Xp22.3. We show that G1.3 elements harbor at least three expressed genes, FAM9A, FAM9B, and FAM9C, and three putative pseudogenes, all mapped to Xp22.33–p22.31. The deduced amino acid sequence of the three novel proteins shows homology to SYCP3, a component of the synaptonemal complex located along the paired chromosomes during meiosis. FAM9A, FAM9B, and FAM9C are expressed exclusively in testis; their proteins are located in the nucleus, and FAM9A localizes to the nucleolus. The presence of genes within duplicons may represent putative recombination-promoting factors for actively transcribed genes in meiotic cells, with the resulting open chromatin structure facilitating unequal crossing-over events and chromosomal rearrangements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.