Abstract

The purpose of this paper is to determine when and under which conditions the solution and game value of the infinite interval matrix games will exist. Firstly, the concept of a reasonable solution defined in interval matrix games was extended to infinite interval matrix games. Then, the solution and game value were characterized by using sequences of interval numbers (defined by Chiao, 2002) and their concept of convergence of interval numbers. Considering that each row or column of the payoff matrix is a sequence of interval numbers, we assume that each row converges to the same interval number α ̃=[α_l,α_r] and each column to the same interval number β ̃=[β_l,β_r]. In a conclusion, the existence of the solution of G ̃ is shown.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call