Abstract

In this paper, an efficient cell-centered extrapolation cascadic multigrid (CEXCMG) method is proposed for solving large linear system of equations resulting from finite volume (FV) discretizations of three dimensional (3D) anisotropic diffusion equations with discontinuous coefficients. For cell-centered FV schemes, the values at vertex need to be approximated often by a linear combination of neighboring cell-centered values. In the literature, the weighted coefficients are obtained by solving local linear system of equations which is costly in 3D. One of the novelties of this paper is a new approach for obtaining vertex values by interpolating the cell-centered ones, which avoids solving local linear system of equations even with arbitrary diffusion tensors. Another main novelty of this paper is a new cascadic multigrid solver based on a prolongation operator, the newly developed explicit gradient transfer method, and a splitting extrapolation operator for solving 3D anisotropic diffusion equations with discontinuous coefficients. Numerical experiments are presented to demonstrate the efficiency and robustness of the CEXCMG method in terms of the mesh size and the contrast in the coefficients of the anisotropic diffusion tensor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.