Abstract
Random genetic drift, or stochastic change in gene frequency, is a fundamental evolutionary force that is usually defined within the ideal Wright-Fisher (WF) population. However, as the theory is increasingly applied to populations that deviate strongly from the ideal model, a paradox of random drift has emerged. When drift is defined by the WF model, it becomes stronger as the population size, N, decreases. However, the intensity of competition decreases when N decreases and, hence, drift might become weaker. To resolve the paradox, we propose that random drift be defined by the variance of "individual output", V(k) [k being the progeny number of each individual with the mean of E(k)], rather than by the WF sampling. If the distribution of k is known for any population, its strength of drift relative to a WF population of the same size, N, can be calculated. Generally, E(k) and V(k) should be density dependent but their relationships are different with or without competition, leading to opposite predictions on the efficiency of random drift as N changes. We apply the "individual output" model to asexual cell populations that are either unregulated (such as tumors) or negatively density-dependent (e.g., bacteria). In such populations, the efficiency of drift could be as low as <10% of that in WF populations. Interestingly, when N is below the carrying capacity, random drift could in fact increase as N increases. Growing asexual populations, especially tumors, may therefore be genetically even more heterogeneous than the high diversity estimated by some conventional models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.