Abstract

We develop a new finite volume scheme for numerically solving transport models associated with hyperbolic problems and balance laws. The numerical scheme is obtained via a Lagrangian–Eulerian approach that retains the fundamental principle of conservation of the governing equations as it is linked to the classical finite volume framework. As features of the novel algorithm we highlight: the new scheme is locally conservative in balancing the flux and source term gradients and preserves a component-wise structure at a discrete level for systems of equations. The novel approach is applied to several nontrivial examples to evidence that we are calculating the correct qualitatively good solutions with accurate resolution of small perturbations around the stationary solution. We discuss applications of the new method to classical and nonclassical nonlinear hyperbolic conservation and balance laws such as the classical inviscid Burgers equation, two-phase and three-phase flow problems in porous media as well as numerical experiments for nonlinear shallow water equations with friction terms. In addition, we consider the case of the source term which is discontinuous as a function of space x. We also extend the Lagrangian–Eulerian framework to the two-dimensional scalar conservation law, along with pertinent numerical experiments to show the performance of the new method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.