Abstract

We present some efficient algorithms based on an exponential time differencing spectral deferred correction (ETDSDC) method for multidimensional second and fourth-order parabolic problems with non-periodic boundary conditions including Dirichlet, Neumann, Robin boundary conditions. Similar to the Fourier spectral method for periodic problems, the key to the efficiency of our algorithms is to construct diagonal discrete linear operators via Legendre–Galerkin methods with Fourier-like basis functions. In combination with the ETDSDC scheme, the proposed methods are spectrally accurate in space and up to 10th-order accurate in time (as shown in this work). We demonstrate the high-order of convergence and efficiency of our algorithms in solving parabolic equations through a series of two-dimensional and three-dimensional examples including Ginzburg–Landau and Allen–Cahn equations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.