Abstract
This paper presents a new and efficient implementation approach for the elliptic curve cryptosystem (ECC) based on a novel finite field multiplication in GF(2m) and an efficient scalar multiplication algorithm. This new finite field multiplication algorithm performs zero chain multiplication and required additions in only one clock cycle instead of several clock cycles. Using modified (limited number of shifts) Barrel shifter; the partial result is also shifted in one clock cycle instead of several clock cycles. Both the canonical recoding technique and the sliding window method are applied to the multiplier to reduce the average number of required clock cycles. In the scalar multiplication algorithm of the proposed implementation approach, the point addition and point doubling operations are computed in parallel. The sliding window method and the signed-digit representation are also used to reduce the average number of point operations. Based on our analysis, the computation cost (the average number of required clock cycles) is effectively reduced in both the proposed finite field multiplication algorithm and the proposed implementation approach of ECC in comparison with other ECC finite field multiplication algorithms and implementation approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.