Abstract
In response to the growing demand to improve reliability and quality of power supply, distributed monitoring devices are gradually being implemented in distribution networks. On the other hand, utilities are demanding more accurate and reliable fault location systems to reduce the economic impact of power outages. This paper presents a novel method that takes full advantage of all available measurements to provide an accurate fault location. The developed method first uses an iterative state estimation based algorithm to find the nearest node to the fault location. It then examines all lines connected to the selected node and locates the fault. The performance of the proposed method is studied by simulation tests on a real 13.8kV, 134-node distribution system under different fault scenarios. The results verify the accuracy of the algorithm and its robustness even under uncertain measured data. The method robustly handles measurement errors, and is applicable to any distribution network with laterals, load taps and heterogeneous lines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Electrical Power & Energy Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.