Abstract

This paper presents the design and implementation of Power System Stabilizers in a multimachine power system based on innovative evolutionary algorithm overtly as Breeder Genetic Algorithm with Adaptive Mutation. For the analysis purpose a Conventional Power System Stabilizer was also designed and implemented in the same system. Simulation results on multimachine systems subjected to small perturbation and three phase fault radiates the effectiveness and robustness of the proposed Power System Stabilizers over a wide range of operating conditions and system configurations. The results have shown that Adaptive Mutation Breeder Genetic Algorithms are well suited for optimal tuning of Power System Stabilizers and they work better than conventional Genetic Algorithm, since they have been designed to work on continuous domain. This proposed Power System Stabilizer is demonstrated through a weakly connected three multi-machine test systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.