Abstract

A system of Boundary-Domain Integral Equations is derived from the mixed (Dirichlet-Neumann) boundary value problem for the diffusion equation in inhomogeneous media defined on an unbounded domain. Boundary-domain integral equations are formulated in terms of parametrix-based potential type integral operators defined on the boundary and the domain. Mapping properties of parametrix-based potentials on weighted Sobolev spaces are analysed. Equivalence between the original boundary value problem and the system of BDIEs is shown. Uniqueness of solution of the BDIEs is proved using Fredholm Alternative and compactness arguments adapted to weigthed Sobolev spaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.