Abstract

L-Asparaginase (L-ASNase) is a potent chemotherapeutic drug employed to treat leukemia and lymphoma. Currently, L-ASNases for therapeutic use are obtained from Escherichia coli and Dickeya chrysanthemi (Erwinia chrysanthemi). Despite their therapeutic potential, enzymes from bacteria are subject to inducing immune responses, resulting in a higher number of side effects. Eukaryote producers, such as fungi, may provide therapeutic alternatives through enzymes that induce relatively less toxicity and immune responses. Additional expected benefits from yeast-derived enzymes include higher activity and stability in physiological conditions. This work describes the new potential therapeutic candidate L-ASNase from the yeast Meyerozyma guilliermondii. A statistical approach (full factorial central composite design) was used to optimize L-ASNase production, considering L-asparagine and glucose concentration, pH of the medium, and cultivation time as independent factors. In addition, the crude enzymes were biochemically characterized, in terms of temperature and optimal pH, thermostability, pH stability, and associated glutaminase or urease activities. Our results showed that enzyme production increased after supplementing a pH 4.0 medium with 1.0% L-asparagine and 0.5% glucose during 75h of cultivation. Under these optimized conditions, L-ASNase production reached 26.01 U mL-1, which is suitable for scale-up studies. The produced L-ASNase exhibits maximal activity at 37°C and pH 7.0 and is highly stable under physiological conditions. In addition, M. guilliermondii L-ASNase has no associated glutaminase or urease activities, demonstrating its potential as a promising antineoplastic agent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.