Abstract

Extensive Monocrotophos (MCP) application in agricultural soils has led to its ubiquitous accumulation in the environment. Human health can be adversely affected by chronic exposure to produce and water from such areas, causing endocrine dysfunction, birth defects, blood and nervous disorders. This study investigated the possibility of detecting Monocrotophos-degrading bacteria in soil samples taken from a cotton cultivation field in a local area. We isolated a consortium that could tolerate and neutralize Monocrotophos upto a concentration of 2000 ppm. The consortium on 16S rRNA sequencing were identified as Micrococcus luteus SBR2, Rhodococcus SBR5, Bacillus aryabhattai SBR8, Ochrobactrum intermedium SBK2. Significant tolerance of individual strains in the range of 500-5000 ppm was observed when incubating them in vitro with Monocrotophos in minimal salt medium. An analysis of the degrading genes opdA, mpd, and opd revealed plasmid borne opdA and mpd in the O.intermedium strain and B.aryabhattai strain. All the strains indicated genomic opdA and mpd whereas opd was not detected in plasmid or genomic DNA. The HPLC showed no peak at 2.5min, when individual strains were incubated with Monocrotophos. The HPLC analysis of soil samples incubated with the consortium for two weeks showed complete degradation of Monocrotophos. GC-MS analysis confirmed that Monocrotophos and its solvent cyclohexamide were degraded into non-toxic compounds such as cyclotrisiloxane compounds, acetic acid, and others. This study indicates that the expression of organophosphate hydrolyzing enzymes in the consortium can greatly contribute to the neutralization of organophosphorus compounds and also serve as a bioremediation method for agricultural soils.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.