Abstract

A new accelerated stress test method was developed to evaluate creep life of flip-chip solder joints with underfill. With this method, a cyclic creep test can be done simply by applying a displacement to the FR-4 printed circuit board (PCB) board in the axial direction. The creep fatigue test was performed under displacement control with real-time electrical continuity monitoring. Test results show that the displacement arising from the force is equivalent to the thermal stress during thermal expansion. It was found that the magnitude of displacement was proportional to the inelastic strain sustained by the solder joints. This indicates that the creep fatigue life obtained will not only reflect the quality of the solder joints, but can also be used to characterize the reliability of the flip-chip assembly. Finite element modeling was also performed to confirm the agreement of deformation of the solder joints under mechanical and thermal loading. Results suggest that deformation and strain of the flip-chip assembly are consistent or comparable between the mechanical and thermal cycling. The failure analysis indicates that fatigue cracks often initiate from the top edge of a corner solder joint in the creep fatigue test, which is similar to what would happen in thermal cycling test. Lastly, the effect of underfill on the creep fatigue test is discussed. It is postulated that the test method is applicable to other flip-chip assemblies, such as conductive adhesive interconnections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.