Abstract

We experimentally demonstrate a new type of silicon-based capacitorless one-transistor dynamic random access memory (1T-DRAM) with an electron-bridge channel. The fabrication steps are fully compatible with modern CMOS technology. An underlap device structure is exploited and positive charges are primarily stored in drain-side and source-side p-type pseudo-neutral regions under the oxide spacer. These regions are isolated by the gate/drain or gate/source depletion regions during programming and read “1” operations which facilitates the device to achieve a 4-second-long retention time at room temperature. The carrier mobility of the electron-bridge 1T-DRAM also exhibits reduced dependence on temperature, thereby the programming window remains viable at high temperatures, while also maintaining 26% of the retention performance at 358 K. The benefits of the planar cell enable the realization of a scalable vertical channel structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.