Abstract

This paper proposes a new dot inversion data addressing technique to achieve a high image quality in thin film transistor liquid crystal displays (TFT-LCDs) using a double rate driving method. The proposed data addressing technique optimizes the charging sequence of subpixels to reduce the variation in pixel voltage caused by parasitic capacitance, while maintaining the low-power consumption of the data driver IC. To verify the performance of the proposed technique, three 17-inch full high-definition fringe field switching mode TFT-LCD samples were fabricated and evaluated. The deviation of the green subpixel luminance using a test pattern (R0, G127, B255) is less than two gray levels, and the power consumption of the data driver IC when displaying a mosaic pattern is reduced to 3.6 W at a 13 V supply voltage. In addition, a new pixel structure with a high 59.4% aperture ratio reduces the power consumption of the backlight unit to 9.8 W, which is 16% less than a conventional design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.