Abstract
Non-invasively collected faecal samples are an alternative source of DNA to tissue samples, that may be used in genetic studies of wildlife when direct sampling of animals is difficult. Although several faecal DNA extraction methods exist, their efficacy varies between species. Previous attempts to amplify mitochondrial DNA (mtDNA) markers from faeces of wild dugongs (Dugong dugon) have met with limited success and nuclear markers (microsatellites) have been unsuccessful. This study aimed to establish a tool for sampling both mtDNA and nuclear DNA (nDNA) from dugong faeces by modifying approaches used in studies of other large herbivores. First, a streamlined, cost-effective DNA extraction method that enabled the amplification of both mitochondrial and nuclear markers from large quantities of dugong faeces was developed. Faecal DNA extracted using a new 'High Volume- Cetyltrimethyl Ammonium Bromide- Phenol-Chloroform-Isoamyl Alcohol' (HV-CTAB-PCI) method was found to achieve comparable amplification results to extraction of DNA from dugong skin. As most prevailing practices advocate sampling from the outer surface of a stool to maximise capture of sloughed intestinal cells, this study compared amplification success of mtDNA between the outer and inner layers of faeces, but no difference in amplification was found. Assessment of the impacts of faecal age or degradation on extraction, however, demonstrated that fresher faeces with shorter duration of environmental (seawater) exposure amplified both markers better than eroded scats. Using the HV-CTAB-PCI method, nuclear markers were successfully amplified for the first time from dugong faeces. The successful amplification of single nucleotide polymorphism (SNP) markers represents a proof-of-concept showing that DNA from dugong faeces can potentially be utilised in population genetic studies. This novel DNA extraction protocol offers a new tool that will facilitate genetic studies of dugongs and other large and cryptic marine herbivores in remote locations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.