Abstract
AbstractSyndromic surveillance is a type of public health surveillance that utilizes nonspecific indicators or symptoms associated with a particular disease or condition to detect and track disease outbreaks early. However, data completeness has been a significant challenge for syndromic surveillance systems in many countries. Incomplete data may make it difficult to accurately identify anomalies or trends in surveillance data. In this study, a new disease mapping method based on a high‐accuracy, low‐rank tensor completion (HaLRTC) algorithm is proposed to estimate the quarterly positivity rate of the human influenza virus (IFV) based on highly insufficient 2010–2015 respiratory syndromic surveillance data from the subtropical monsoon region of China. The HaLRTC algorithm is a spatiotemporal interpolation method applied to fill in missing or incomplete data using a low‐rank tensor structure. The results show that the accuracy (R2 = 0.880, RMSE = 0.037) of the proposed method is much higher than that of three traditional disease mapping methods: Cokriging, hierarchical Bayesian, and sandwich estimation methods. This study provides a new disease mapping approach to improve the quality and completeness of data in syndrome surveillance or other familiar systems with a large proportion of missing data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.