Abstract

Vanadium interactions with low molecular mass binders in biological fluids entail the existence of vanadium species with variable chemical and biological properties. In the course of efforts to elucidate the chemistry related to such interactions, we have explored the oxidative chemistry of vanadium(III) with the physiologically relevant tricarboxylic citric acid. Aqueous reactions involving VCl(3) and anhydrous citric acid, at pH approximately 7, resulted in blue solutions. Investigation into the nature of the species arising in those solutions revealed, through UV/visible and EPR spectroscopies, oxidation of vanadium(III) to vanadium(IV). Further addition of H(2)O(2) resulted in the oxidation of vanadium(IV) to vanadium(V), and the isolation of a new vanadium(V)-citrate complex in the form of its potassium salt. Analogous reactions with K(4)[V(2)O(2)(C(6)H(4)O(7))(2)].6H(2)O and H(2)O(2) or V(2)O(5) and citrate at pH approximately 5.5 afforded the same material. Elemental analysis pointed to the molecular formulation K(4)[V(2)O(4)(C(6)H(5)O(7))(2)].5.6H(2)O (1). Complex 1 was further characterized by FT-IR and X-ray crystallography. 1 crystallizes in the triclinic space group P(-)1, with a = 11.093(4) A, b = 9.186(3) A, c = 15.503(5) A, alpha = 78.60(1) degrees, beta = 86.16(1) degrees, gamma = 69.87(1) degrees, V = 1454.0(8) A(3), and Z = 2. The X-ray structure of 1 reveals the presence of a dinuclear vanadium(V)-citrate complex containing a V(V)(2)O(2) core. The citrate ligands are triply deprotonated, and as such they bind to vanadium(V) ions, thus generating a distorted trigonal bipyramidal geometry. Binding occurs through the central alkoxide and carboxylate groups, with the remaining two terminal carboxylates being uncoordinated. One of those carboxylates is protonated and contributes to hydrogen bond formation with the deprotonated terminal carboxylate of an adjacent molecule. Therefore, an extended network of hydrogen-bonded V(V)(2)O(2)-core-containing dimers is created in the lattice of 1. pH-dependent transformations of 1 in aqueous media suggest its involvement in a web of vanadium(V)-citrate dinuclear species, consistent with past solution speciation studies investigating biologically relevant forms of vanadium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.