Abstract
We present near-infrared spectroscopic observations of the high-intensity HeI 10830 emission line in 45 low-metallicity HII regions. We combined these NIR data with spectroscopic data in the optical range to derive the primordial He abundance. The use of the HeI 10830A line, the intensity of which is very sensitive to the density of the HII region, greatly improves the determination of the physical conditions in the He^+ zone. This results in a considerably tighter Y - O/H linear regression compared to all previous studies. We extracted a final sample of 28 HII regions with Hbeta equivalent width EW(Hbeta)>150A, excitation parameter O^2+/O>0.8, and with helium mass fraction Y derived with an accuracy better than 3%. With this final sample we derived a primordial He mass fraction Yp = 0.2551+/-0.0022. The derived value of Yp is higher than the one predicted by the standard big bang nucleosynthesis (SBBN) model. Using our derived Yp together with D/H = (2.53+/-0.04)x10^-5, and the chi^2 technique, we found that the best agreement between these light element abundances is achieved in a cosmological model with a baryon mass density Omega_b h^2 = 0.0240+/-0.0017 (68% CL), +/-0.0028 (95.4% CL), +/-0.0034 (99% CL) and an effective number of neutrino species Neff = 3.58+/-0.25 (68% CL), +/-0.40 (95.4% CL), +/-0.50 (99% CL). A non-standard value of Neff is preferred at the 99% CL, implying the possible existence of additional types of neutrino species.
Submitted Version (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have