Abstract

Abstract Imaging of vertical structures is a challenge in the seismic imaging field. The conventional imaging methods for vertical structures are highly dependent on the reference model or boreholes. Time-reversed mirror imaging can effectively image the vertical structures based on the multiples and a smoothed velocity model without the need of accurate seismic wavelet estimation. Although the Laplacian operator is applied in time-reversed mirror imaging, there still exists severe residual noise. In this study, we developed a new imaging denoising strategy and an X-shaped supplement denoising operator for time-reversed mirror imaging based on the geometric features of the image and the causes of imaging noise. Synthetic results for the single- and double-staircase model prove the powerful denoising capacity of the X-shaped supplement denoising operator. In addition, the results of a Marmousi model prove that the X-shaped denoising operator can also effectively suppress the noise when applying time-reversed mirror imaging method to image complex inclined structures. However, the X-shaped denoising operator still contains some limitations, such as non-amplitude-preserving.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.