Abstract

A parallel higher-order method of moments (HOMoM) with a newly developed reduced-communication, lower-upper (RCLU) decomposition solver is proposed in this article. The method uses 201,600 central processing unit (CPU) cores on a supercomputer located in Guangzhou, China. Our code achieves an extremely high parallel efficiency when simulating a large aircraft that has been discretized in the method-of-moments (MoM) context, using a higher-order quadrilateral patch basis, into approximately 1.06 million unknowns for the surface-current distribution. Remarkably, its solution using the classical lower-upper (LU) solver only takes roughly half an hour. In addition, a review of the in-core and out-of-core algorithms of an HOMoM is presented, with a focus on their parallel implementation. The parallel performance of the methodology is also demonstrated on some challenging applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.