Abstract

The Adaptive Integral Method (AIM) is applied to solve the volume integral equation in conjunction with the higher-order Method of Moments (MoM). The classical AIM is modified for larger discretization cells to take advantage of higher-order MoM. The technique combines the low computational complexity and memory requirements of AIM with the reduced number of unknowns and higher-order convergence of higher-order hierarchical Legendre basis functions. Numerical examples given show the advantages of the proposed technique over AIM based on low-order basis functions in terms of memory and computational time. Several preconditioning techniques applied to AIM for volume integral equations are considered.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call