Abstract

Abstract Kinetic and thermodynamic analysis of non-isothermal decomposition of super-fine kaolin powder was examined. It was established that the decomposition process proceeds through liberation of adsorbed water, the loss of the water of hydration and dehydroxylation process, which produces highly disordered metakaolin. By applying the distributed reactivity approaches, it was found that dehydroxylation can be described with simultaneous two-parallel reactions model. By applying the Exner-Linert statistical method on estimated Eyring plots, the true isokinetic temperature was confirmed. The appearance of entropy – enthalpy compensation (EEC) showed the direct cause-and-effect relationship between these thermodynamic observables resulting by physically real factors such as the steric factors. It was shown that the phenomenon of true compensation effect arises from conformational (geometrical) changes, which occur during metakaolin formation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.