Abstract
This paper presents mathematical expressions to identify the existence of localized surface defects on the raceways of the deep groove ball bearings. For the formulation of the mathematical expressions, matrix method of dimensional analysis based on force, length, time, and temperature (FLTϴ) system of unis is used. The model is based on the complete set of physical dimensions and operating parameters of the deep groove ball bearing in that the spall size is directly allied with vibration responses. The formulated governing model equations are solved numerically by applying a scheme of empirical modeling through multiple factorial regression analysis. Experiments are performed on the laboratory test rig to verify the results obtained from the developed model equations. For the experiments, deep groove ball bearings designated as SKF 6307 are used. These bearings are having artificially induced square-shaped surface defects of different sizes on the outer and inner races and are analyzed for different operating speeds. A good similarity between the predicted numerical values and the experimental results is noticed. This study showed that the proposed methodology can be successfully used for the characterization of the localized surface defects on the raceways of the deep groove ball bearings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.