Abstract

A dynamic model is developed to investigate vibrations of high speed rolling ball bearings with localized surface defects on raceways. In this model, each bearing component (i.e., inner raceway, outer raceway and rolling ball) has six degrees of freedom (DOFs) to completely describe its dynamic characteristics in three-dimensional space. Gyroscopic moment, centrifugal force, lubrication traction/slip between bearing component are included owing to high speed effects. Moreover, local defects are modeled accurately and completely with consideration of additional deflection due to material absence, changes of Hertzian contact coefficient and changes of contact force directions due to raceway curvature variations. The obtained equations of motion are solved numerically using the fourth order Runge–Kutta–Fehlberg scheme with step-changing criterion. Vibration responses of a defective bearing with localized surface defects are simulated and analyzed in both time domain and frequency domain, and the effectiveness of fault feature extraction techniques is also discussed. An experiment is carried out on an aerospace bearing test rig. By comparing the simulation results with experiments, it is confirmed that the proposed model is capable of predicting vibration responses of defective high speed rolling ball bearings effectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call