Abstract
The two primary challenges preventing the commercialization of fuel cell hybrid electric vehicles (FCHEV) are their high cost and limited lifespan. Improper use usage can could also hasten the breakdown of proton exchange membrane fuel cell (PEMFC). This paper proposes a new cost-minimizing power-allocating technique with fuel cell/battery health-aware control to optimize the economic potential of fuel cell/battery hybrid buses. The proposed framework quantifies the fuel cell (FC) deterioration of the whole working zone in a real hybrid electric bus using a long short-term memory network (LSTM), which reduces the time required to get the key lifetime parameters. A new FC lifespan model is embedded into the control framework, together with a battery aging model, to balance hydrogen consumption and energy source durability. In addition, in the speed prediction step, an enhanced online Markov prediction approach with stochastic disturbances is presented to increase the forecast accuracy for future disturbances. Finally, comparative analysis is used to verify the efficacy of the suggested approach, which shows that when compared to the benchmark method, the proposed strategy may extend the FC lifetime and lower operating costs by 5.04% and 3.76%, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.