Abstract
This paper presents the analysis, design, and implementation of a high performance and cost effective sensorless control scheme for the extensively used brushless dc motors. In an effort to decrease cost and increase ease of implementation, the commutation signals are obtained without the motor neutral voltage, multistage analog filters, A/D converters, or the complex digital phase shift (delay) circuits which are indispensable in the conventional sensorless control algorithms. In the proposed method, instead of detecting the zero crossing point of the nonexcited motor back electromagnetic force (EMF) or the average motor terminal to neutral voltage, the commutation signals are extracted directly from the specific average line to line voltages with simple RC circuits and comparators. In contrast to conventional methods, the neutral voltage is not needed; therefore, the commutation signals are insensitive to the common mode noise. Moreover, the complex phase shift circuit can be eliminated. As a result, the proposed control algorithm can be easily interfaced with the cost effective commercial Hall effect sensor based commutation integrated circuits. Due to its inherent low cost, the proposed control algorithm is particularly suitable for cost sensitive products such as air purifiers, air blowers, cooling fans, and related home appliances. Theoretical analysis and experiments are conducted over a wide operating speed range and different back EMF waveforms to justify the effectiveness of the proposed method
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.