Abstract

This paper presents a nonlinear control technique for a three-phase shunt hybrid power filter (SHPF) to enhance its dynamic response when it is used to compensate for harmonic currents and reactive power. The dynamic model of the SHPF system is first elaborated in the stationary ldquoabcrdquo reference frame and then transformed into the synchronous orthogonal ldquodqrdquo reference frame. The ldquodqrdquo frame model is divided into two separate loops, namely, the two current dynamic inner loops and the dc-voltage dynamic outer loop. Proportional-integral (PI) controllers are utilized to control the SHPF input currents and dc-bus voltage. The currents track closely their references so that the SHPF behaves as a quasi-ideal current source connected in parallel with the load. It provides the reactive power and harmonic currents required by the nonlinear load, thereby achieving sinusoidal supply currents in phase with supply voltages under dynamic and steady-state conditions. The SHPF consists of a small-rating voltage-source inverter (VSI) in series with a fifth-harmonic tuned <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">LC</i> passive filter. The rating of the VSI in the SHPF system is much smaller than that in the conventional shunt active power filter because the passive filter takes care of the major burden of compensation. The effectiveness of the control technique is demonstrated through simulation and experimentation under steady-state and dynamic operating conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.