Abstract

The high quality of electrical power in high power and high reliability applications is a crucial necessity even under fault mode function. However, in these conditions, the quality of the torque is a key feature. To overcome this problem, the multiphase permanent magnet (PM) motors seems to be a very attractive choice. In order to highlight the robustness and reliability of this technology, this paper investigates the control of a five-phase PM motor under an open circuited phase fault conditions. Moreover, a High Order Sliding Mode (HOSM) controller combined to an optimal reference current generation is tested and compared to a PID controller under fault mode conditions. This original control strategy is proposed for faulted conditions. Compared to classical fault tolerant control, this strategy allows a better dynamic tracking of the non-sinusoidal reference currents and leads to a smooth torque with minimal losses even in severe fault conditions. To validate the proposed control strategy, simulation, and experimental results are presented and discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call