Abstract
A new control method of nonlinear dynamic systems is proposed based on the impulse responses of universal learning networks (ULNs), ULNs form a superset of neural networks. They consist of a number of interconnected nodes where the nodes may have any continuously differentiable nonlinear functions in them and each pair of nodes can be connected by multiple branches with arbitrary time delays. A generalized learning algorithm is derived for the ULNs, in which both the first order derivatives (gradients) and the higher order derivatives are incorporated. One of the distinguished features of the proposed control method is that the impulse response of the systems is considered as an extended part of the criterion function and it can be calculated by using the higher order derivatives of ULNs. By using the impulse response as the criterion function, nonlinear dynamics with not only quick response but also quick damping and small steady state error can be more easily obtained than the conventional nonlinear control systems with quadratic form criterion functions of state and control variables.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.