Abstract

This paper introduces a new continuous integral sliding mode control algorithm, where the discontinuous function of the super-twisting control law is replaced with a continuous disturbance observer for the substantial chattering attenuation. In the present integral sliding mode control, the discontinuous function generates chattering that is undesirable for several real-time applications. The proposed control strategy decreases the amplitude of the controller gain compared to the existing integral sliding mode controls, and as a consequence of this, the attenuation of chattering is achieved to a great extent. The efficacy of the proposed control algorithm is validated successfully on the single-input single-output Inverted Pendulum and 2-DOF Helicopter nonlinear coupled multi-input multi-output systems. The simulation and experimental results demonstrate the successful application of the proposed control approach to follow reference inputs and acquire robustness and stabilization of the system in the presence of limited matched perturbations and nonlinearities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.