Abstract

Implicit block approaches are used by a number of numerical analyzers to model mild, medium, and hard differential systems. Their excellent stability characteristics, self-starting nature, quick convergence, and large decrease in computing cost all contribute to their widespread application. With these numerical benefits in mind, a new one-step implicit block method with three intrastep grid points has been created. The major term of the local truncation error is minimized to determine which of these points is optimal. The reformulation of the suggested technique leads to a significant decrease in computing cost while maintaining the same consistency, zero-stability, mathcal{A}-stability, and convergence. Several sorts of error are calculated, together with CPU time and efficiency plot, to determine which is superior. Differential models from the fields of heat transfer, population dynamics, and chemical engineering show that the suggested method does a better job than some of the current hybrid block and implicit Radau methods with similar properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call