Abstract

Implicit block approaches are used by a number of numerical analyzers to model mild, medium, and hard differential systems. Their excellent stability characteristics, self-starting nature, quick convergence, and large decrease in computing cost all contribute to their widespread application. With these numerical benefits in mind, a new one-step implicit block method with three intrastep grid points has been created. The major term of the local truncation error is minimized to determine which of these points is optimal. The reformulation of the suggested technique leads to a significant decrease in computing cost while maintaining the same consistency, zero-stability, mathcal{A}-stability, and convergence. Several sorts of error are calculated, together with CPU time and efficiency plot, to determine which is superior. Differential models from the fields of heat transfer, population dynamics, and chemical engineering show that the suggested method does a better job than some of the current hybrid block and implicit Radau methods with similar properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.