Abstract

In this paper, a remodeling of the bar adsorptive microextraction (BAμE) technique is proposed with impregnation of the derivatization reagent on the surface of the adsorptive bar containing a biosorbent material. The derivatization reagent was 2,4-dinitrophenylhydrazine (DNPH), which was adsorbed on the surface of the bar containing cork powder as the extractor phase for the determination of two aldehydes (hexanal and heptanal) which are known as lung cancer biomarkers in human urine samples. The derivatization reaction and the extraction occurred simultaneously on the surface of the bar (length 7.5 mm) under acidic conditions. The method optimization was carried out by univariate and multivariate analysis. The optimal conditions for the method were a DNPH to aldehydes ratio of 40:1, buffer solution of pH 4.0, extraction time of 60 min and liquid desorption of 10 min in 100 μL of acetonitrile. The aldehydes were analyzed by HPLC-DAD with a simple and fast (6 min) chromatographic run. The limits of detection (LODs) for hexanal and heptanal were 1.00 and 0.73 μmol L−1, respectively. The relative recoveries in urine samples ranged from 88 to 111% with relative standard deviations (RSDs) being less than 7%. The method developed is of low cost and can be successfully used for the quantification of these two lung cancer biomarkers in human urine samples, potentially providing an early diagnosis of lung cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.